R-BASED GIS MODELING OF INVASIVE PLANTS ALONG THE APPALACHIAN TRAIL

> Christopher A. Badurek Department of Geography State University of New York at Cortland Cortland, NY

NYGeoCon Meeting, Lake Placid, NY

Purpose of Project

- (1) Extent of total area and concentration of these species along the trail
- (2) Determine the impacts of environmental and human impact variables on the location of the species
- (3) Identify hot spots along the trail to further investigate dispersion (e.g., transmission lines, trail entry points)
- (4) Identify hot spot areas for management approaches

Exotic Species 1: Tree of Heaven

- Ailanthus altissima
- Tree of Heaven, Chinese origin

Exotic Species 2: Purple Loosestrife

Lythrum salicariaNative of Europe, Asia

Exotic Species 3: Japanese Stilt Grass

- Microstegium vimineum
- Native of
 South Asia,
 East Asia
- Introduced in TN through packaging of Chinese porcelain

Model Variables

Environmental Variables

- Digital Elevation Model
- Slope
- Aspect
- Southwestness
- Impervious Surface (3x3 and 7x7 windows)
- Distance to Major Roads
- Distance to Secondary Roads
- Distance to Streams
- Distance to Transmission Lines

Climate Variables

- Annual Mean Temperature
- Temperature Annual Range
- Mean Temperature of Coldest Quarter
- Annual Precipitation
- Precipitation Seasonality

Left out of Final Model

- 7x7 Impervious Layer
- Distance to Transmission Layer
- Aspect

Model Development

Geodatabase

- Incorporated all of the data into a new geodatabase projected in Albers Equal Area
- Allowed for quicker geoprocessing (From ESRI online support)
- Provided an organizational advantage

Presence/Absence Data

- Presence data was obtained from EDDmapS and GBIF websites for the 3 species
- http://www.eddmaps.org
- http://www.gbif.org
- Absence data was generated randomly inside of a GIS

Model Development

Variable Extraction

- Presence/Absence tables were developed inside of ArcGIS.
- The data points were used to extract the cell values for each variable at that location.
- These tables were then combined in "R" and ran inside the Logistic Regression model

Raster Calculator

- After obtaining the coefficients in "R" they were used in Raster
 Calculator to weight each of the variable layers.
- From that a range prediction graphic can be obtained.

Presence – Absence Data

Presence – Absence Data

Model Outputs

Percentage of Area at Risk within 1000 Meter Buffer

	Ailanthus	Lythrum Salicaria	Microstegium
	Altissima		Veminium
Likelihood of			
Occurrence(%)			
0 - 20	30.20409	59.129825	21.961204
21 - 40	27.366497	6.272678	17.639627
41 - 60	24.377029	5.278301	20.306289
61 - 80	13.775029	6.556611	23.239231
80 - 100	4.277353	22.762582	16.853647

Results Species 1: Tree of Heaven

Results Species 2: Purple Loosestrife

Results Species 2: Purple Loosestrife

Results Species 2: Purple Loosestrife

Results Species 3: Japanese Stilt Grass

Results Species 3: Japanese Stilt Grass

Results Species 3: Japanese Stilt Grass

Summary of Findings

- The model results provide reasonable probabilities for the three species.
 - Human disturbance variables displayed varying importance.
 - impervious surface was only significant for Ailanthus, while distance to major roads was significant for the Ailanthus and Microstegium models.
 - Elevation was negatively related to Lythrum occurrence and was not significant for the two other species.
 - Slope was found to be positively related to Ailanthus occurrence and negatively related to the occurrence of Lythrum. Slope was not a significant variable in the Microstegium model.

Acknowledgements: Work supported by Michael Denslow and Dylan Philyaw. Cooperative Ecosystems Studies Unit Task Agreement Project Predictive GIS Modeling of Invasive Species for the NPS Appalachian National Scenic Trail awarded to PI Dr. Chris Badurek, CESU Coop Agreement No: H5000090541.

